欢迎来到雷火电竞有限公司官方网站! 咨询热线:137-6171-7707(陈先生)

镁合金3D打印:金属构件轻量化发展的“未来之光”

航空航天、武器装备等重要领域对轻量化材料的需求日益迫切,镁合金作为质量*轻的金属结构材料逐渐受到广泛关注,镁合金的增材制造也开始受到材料界越来越多的重视。

镁合金作为*轻的金属结构材料,密度仅为 1.74 g/cm3,约为铝合金的 2/3、锌合金的 1/3、钢铁的1/4、钛合金的 2/5,与多数工程塑料相当。不仅如此,镁合金还具有诸多优异的特性,例如优良的比强度与比刚度、优异的阻尼性能、热稳定性和抗电磁辐射性能等,已经被广泛应用于航空、航天、汽车、电子通讯等领域。

1710730853827821.png

随着工业界对产品综合性能要求的进一步提升,流道、拓扑等更加轻量化的零件设计理念开始崭露头角。然而目前镁合金的成形方式依然主要采用传统的铸造、粉末冶金和塑性成形等,这些传统的加工工艺难以对一体化构件内部进行加工,无法在部件内部构建精细流道结构或拓扑结构,限制镁合金发挥轻量化的优势与复杂结构件成型的潜力。在此情况下,增材制造突破了传统制造的限制,具有高精度、高设计自由度、高利用率与节能等特点。通过对工艺参数的设计,可以调控合金微观结构和性能,*大化实现合金材料的形性协同设计能力,净成形制备出传统制造无法实现的复杂结构产品,扩大镁合金在生物医用、汽车、消费电子等领域的应用。

△激光粉末床熔融技术制备的“Mg”形状的点阵结构(由镁合金WE43制成)

3D打印技术已广泛用于制造不锈钢、钛合金、铝合金等复杂样件,并成功用于发动机机匣,散热管道,减重结构件等。近年来,随着对镁合金在加工过程中易燃性的了解不断增加,针对镁合金的增材制造相关研究也逐步展开,以期突破传统镁合金制备工艺对镁合金发挥轻量化优势的限制。目前研究人员已经成功利用选区激光熔化技术(Selective Laser Melting,SLM)技术、电弧熔丝沉积技术(Wire Arc Additive Manufacturing,WAAM)技术、搅拌摩擦增材技术(Friction Stir Additive Manufacturing, FSAM)技术、激光熔化沉积技术(Laser Melting Deposition,LMD)技术制备了具有煌⒐圩橹阅芨饕斓拿竞辖鸾峁辜踔粱�拓扑优化设计,生产制造出了一系列无法用传统加工方式制造的镁合金零件,大大拓展了镁合金在轻量化复杂构件上的应用潜力。

常用镁合金成分及其分类

纯镁由于其强度太低而很少被直接使用,在增材制造中常用镁合金按牌号分为 AZ系列(AZ31, AZ61,AZ80,AZ91),ZK系列(ZK60,ZK61),WE系列(WE43,WE54,WE93)。根据标准 GB/T5153-2016,不同牌号的镁合金化学成分如表 2所示。AZ系列(Mg-Al-Zn)镁合金是以 Mg-Al系镁合金为基础发展而来的,适量的 Zn元素添加可以提升试件的抗蠕变性能并减轻镁合金中的 Fe、Ni等杂质元素对腐蚀性能所造成的不利影响,具有均衡的力学性能和一定的耐腐蚀能力,是目前在增材制造研究中应用*广泛的镁合金。ZK系列(Mg-Zn-Zr)镁合金是在Mg-Zn系镁合金的基础上添加 Zr元素发展而来,研究表明镁中添加 Zr元素后可以有效的细化晶粒,且有着较强的固溶强化作用,提升镁合金的力学性能,是一种很有研究前景的生物医用材料。WE(Mg-RE)系列镁合金属于稀土镁合金,添加稀土元素的镁合金在室温下表现出良好的抗蠕变性能和拉伸性能。然而,稀土元素成本较高,目前对增材制造的研究主要集中在 AZ系镁合金,对其他系合金尤其是稀土镁合金的增材制造研究较少,开发低成本、高性能的稀土镁合金对镁合金增材制造的研究具有重要意义。