欢迎来到雷火电竞有限公司官方网站! 咨询热线:137-6171-7707(陈先生)

医用镁合金知识与应用大全

镁合金具有比重轻、比强度高、电磁屏蔽性能好、抗震性好、易加工、可回收利用以及良好的生物相容性和可降解性,在3C产品、汽车、航空航天和生物医用领域有广泛的应用前景。人口老龄化在我国已成为日益严重的社会问题,由此带来了对生物医用材料如骨植入材料的巨大需求。医用镁合金作为一种新型可降解生物医用材料,例如心血管支架、骨植入材料(骨钉、骨板等),已成为当今前沿研究热点。其中,可控降解是医用镁合金*基础、*关键的问题,腐蚀过快难以满足临床的需要。腐蚀问题涉及材料科学和加工的多方面因素:成分、组织(晶粒尺寸、第二相、织构、位错、孪晶)、加工工艺(挤压、轧制、铸造、锻造和焊接以及热处理)、环境(化学、生物)及力学等耦合,因而成为当前生物医用镁合金的研究热点。

R-C (30).jpg

Mg及其合金具有以下生物医学特性:良好的生物相容性、力学相容性、促进成骨功能与抗菌功能。与可降解铁基、锌基合金相比,一个成人每天Mg2+的摄入量可达240~420 mg,是Fe3+(8~18 mg)和Zn2+ (8~11 mg)的52.5倍[11]。在成人体内一般含有约30 g Mg2+,主要存在于骨骼和肌肉中。Mg2+是人体中含量仅次于K+、Na+、Ca2+的阳离子,参与人体所有代谢过程,能参与蛋白质合成,可激活体内多种酶和肠道、胃等功能,调节中枢神经系统及肌肉的活动,保障心肌的正常收缩[12]。Mg还通过调控羟基磷灰石(HA)的形成来影响骨组织的矿化。Mg的缺失可导致骨质疏松,还与心血管疾病、高血压和糖尿病的发生有着密切的联系[13]。血浆中Mg2+经过肾小球过滤,95%~98%由肾小管进行再吸收,肾小管的再吸收将影响血浆中Mg2+的浓度。如果肠胃Mg2+的吸收量增加,则肾小管的再吸收量就会相应地减少,排泄量增加,使得血浆中的Mg2+浓度能够维持一定水平。


与可降解高分子材料比较,医用镁合金具有更高的机械强度;与不锈钢、Co、钛合金等惰性金属材料以及可降解铁基、锌基合金相比,Mg及其合金的弹性模量更接近人骨(17~20 GPa),有效降低应力遮挡效应(stress shielding effect);Mg密度(1.74 g/cm3)与人骨(1.75 g/cm3)也非常接近。因此,Mg符合理想骨板的要求。


镁合金在人体中释放出的Mg2+能促进成骨细胞的生长、增殖及分化,加速骨愈合。Zhang等[18]发现,Mg植入大鼠股骨骨髓腔内,促进了新骨在股骨外周的形成。究其原因是新骨组织位于骨膜内,骨膜组织含有大量感觉神经纤维和干细胞。骨膜神经纤维可释放具有标志性的神经递质降钙素基因相关肽(CGRP)。在骨膜部位,Mg2+刺激感觉神经末端释放出更多的神经递质(主要为CGRP);骨膜内增多的CGRP进一步促进骨膜内干细胞的成骨分化,以致于在骨膜部位形成新骨。研究表明,高于生理浓度的Mg2+可显著提高脊髓背根神经元突触的可塑性,促进大鼠骨质疏松、骨折的愈合。因此,在骨折愈合初期,Mg及其合金骨固定材料可为骨骼修复提供良好的骨细胞生长微环境和力学环境,降低应力遮挡效应、局部骨质疏松和再骨折的可能性。


*适合细菌生长的环境pH值为7.4~7.6,Mg在降解时会产生大量的OH-,造成微环境pH值升高。这种高碱性微环境会对细菌的正常生长产生抑制作用,从而达到抗菌的目的。此外,Mg2+抑菌的机制还可能涉及:当细胞膜外存在高浓度的金属阳离子时,会使正常细菌内外极化状态发生改变,造成新的离子浓度差,从而阻碍一些细菌生长所必需物质的转运;某些金属离子可以使细菌内部分酶失活,影响细菌正常的生化反应,导致细菌的能量与物质代谢紊乱,进而抑制细菌的生长。


本文拟从材料腐蚀学和生物医学的角度来阐述医用镁合金成分、组织及腐蚀之间的相互关系及相互作用。从腐蚀科学的角度,腐蚀(corrosion)定义为材料受到周围环境介质的化学、电化学和物理作用下引起失效破坏的现象。金属的腐蚀就是金属与周围环境(介质)之间发生化学或电化学作用而引起的破坏或变质。在大多数情况下,腐蚀行为产生被动和消极的不良影响。从生物医学的角度,人们更倾向于把材料的腐蚀理解为生物降解(biodegradation)或吸收(absorption),这种行为是具有主动和积极作用的。本文中,在腐蚀和生物医学学科分别使用腐蚀和降解的概念。


1 医用镁合金的合金化

合金元素对镁合金组织和性能有着重要影响。合金化是改变镁合金微观组织包括晶粒尺寸、第二相或金属间化合物的组成、结构、尺寸及形态与分布的重要方法,影响镁合金机械性能、降解行为和生物相容性[1]。


1.1 医用合金化设计

镁合金主要的强化方式有固溶强化、细晶强化和时效强化。凡是在Mg中能大量固溶的元素,都是强化镁合金的有效合金元素。金属Mg的原子半径为0.160 nm,与Mg可形成固溶体的元素共有30个,其中包括Al、Ag、Zn、Li和Zr。根据Hume-Rothery固溶度准则,当溶剂原子与溶质原子的半径差超过15%时,不利于形成固溶体,固溶度很小。当采用快速凝固技术时,原子间的半径差可增大到30%,可以丰富Mg的合金体系。在考虑Hume-Rothery准则的同时,还要考虑化学亲和力因素,电负性差值大于0.4的元素不易形成固溶体。


基于合金元素的作用特点和极限溶解度,镁合金大致分成共晶反应类和包晶反应类。共晶反应类元素(括号内数字为极限溶解度,质量分数)包括:Ag (15.5%)、Al (12.7%)、Zn (6.2%)、Li (5.5%)、Th (4.5%);稀土元素(RE):Y (12.5%)、Nd (3.6%)、La (1.9%)、Ce (0.85%)、Pr (0.5%)和混合RE (以Ce或La为主)[22]。包晶反应类元素包括:Zr (3.8%)和Mn (3.4%)。其主要作用是细化晶粒,但也有净化合金(消除杂质Fe)、提高耐蚀性、耐热性的作用。特别的如Li对镁合金耐蚀性的影响存在不同看法,后文将详细说明。


基于二元镁合金的力学性能,镁合金元素可以划分为以下3类[23]。**类,同时提高镁合金强度与塑性的合金元素,按强度递减顺序为:Al、Zn、Ca、Ag、Ce、Ga、Ni、Cu、Th;按塑性递减顺序为:Tb、Ga、Zn、Ag、Ce、Ca、Al、Ni、Cu。第二类,只提高Mg的塑性,而对强度影响很小的合金元素:Cd、Tl、Li。第三类,牺牲塑性、提高强度的合金元素:Sn、Pb、Bi、Sb。基于细化组织,提高镁合金的韧性和耐蚀性的合金元素有,细化组织:Ca、RE、Mn、Sr、Y、Zr;提高韧性:Al、Li、Mn、Sr、Zr;提高耐蚀性:Al、In、Mn、Zn、Zr、Y。而可适量应用于人体的合金元素[24]有:Ca、Mn、Zn、Si、Zr、Bi、Sr、Sb、Y、RE、Sn、Li等。


1.2 医用镁合金体系

目前,镁合金材料体系包含:Mg-Al、Mg-Zn、Mg-RE、Mg-Mn、Mg-Ca、Mg-Li、Mg-Sr、Mg-Sc、Mg-As等,各合金体系的力学性能在Zheng等[9]的综述论文中多有体现。Mg-As合金降解较慢,但As有毒性,故是否可作为医用镁合金,还未见相关报道。


1.2.1 Mg-Al合金 根据Mg-Al合金系相图,在710 K时,Al在Mg中的固溶度*大(12.7%,质量分数);降到室温时,Al在Mg中的溶解度降低到约2% (质量分数),共晶反应为[26]:L→α(Mg)+β(Mg17Al12)。但在实际凝固条件下,如AZ91镁合金会形成离异共晶组织或非平衡共晶组织。对于AZ31合金,Al完全地固溶在α-Mg中,没有β相的形成。常见的Mg-Al合金有铸态AZ91和挤压态AZ80、AZ63、AZ31、AE21,其优点是耐蚀性较好,但Al含量高的镁合金似乎不宜作为医用生物材料。


1.2.2 Mg-Zn合金 在621 K时,Mg-Zn合金系发生共晶反应[26]:L→α(Mg)+β(MgZn)。Mg-Zn二元合金的缺点是组织粗大,对显微缩孔非常敏感。因此,需要加入第3种合金元素如Zr以细化晶粒,典型的Mg-Zn-Zr合金为ZK60。Mg-Zn合金系有:Mg-6Zn[27]、Mg-Zn-Zr[28]、Mg-Zn-Ca[29]、Mg-Zn-Y、Mg-Zn-Fe、Mg-Zn-Ca-Fe、Mg-Zn-Mn-Ca、Mg-Zn-Zr-Y、Mg-Zn-Mn-Y、Mg-Zn-Mn-Ca-Fe等。Mg-Zn合金有生物相容性好、塑性高的优点。但若Zn含量超过3% (质量分数),则会加速合金降解。


1.2.3 Mg-RE合金 Mg-RE合金包括:Mg-Y[30]、Mg-Nd[31]、Mg-Ce[26]、Mg-Pr[26]、Mg-La[26]。二元稀土相图富Mg区是相似的,即都具有简单的共晶反应,形成Mg24Y5或Mg12RE:L→α(Mg)+β(Mg24Y5)、L→α(Mg)+β(Mg12Nd)、L→α(Mg)+β(Mg12Ce)、L→α(Mg)+β(Mg12Pr)、L→α(Mg)+β(Mg12La)。常见Mg-RE系合金有:Mg-Y-Zn、Mg-Nd-Zn-Zr[32]、Mg-Y-Nd-Zr、Mg-Nd-Ca-Y-Zr、Mg-Nd-Y-Zr-Ca-Zn,典型的合金有WE43 (4%Y, 3%RE,质量分数)。Mg-RE合金的优点是合金强度较高、耐蚀性好。缺点是稀土含量过高会降低生物相容性。


1.2.4 Mg-Mn合金 Mn在Mg中发生包晶反应[26]:L→α(Mg)+β(Mn)。典型的合金有:Mg-Mn-Ca、Mg-Mn-Zn、Mg-Mn-Zn-Ca。其优点是生物相容性好,塑性高和耐蚀性好。


1.2.5 Mg-Ca合金 Mg-Ca合金共晶反应为[26]:L→α(Mg)+β(Mg2Ca)。其优点是生物相容性好。但是,有关Ca元素对于Mg-Ca合金耐蚀性的影响一直存在不同的看法,将在下文重点讨论。


1.2.6 Mg-Li合金 Mg-Li共晶反应为[26]:L→α(Mg)+β(Li)。Mg-Li二元合金有:Mg-3.5Li、Mg-8.5Li、Mg-14Li。Mg-Li二元合金具有优良的塑性,但强度较纯Mg有所下降。合金元素Al、Ca、Y可提高其耐蚀性能和机械强度。典型的Mg-Li合金包括Mg-Li-Al三元合金:LA33、LA63、LA93;Mg-Li-Ca三元合金:Mg-1Li-1Ca[33]、Mg-4Li-1Ca[34]、Mg-9Li-1Ca[35];以及四元合金:LAE442 (4%Li、4%Al、2%RE,质量分数)、Mg-1Li-1Ca-1Y[36]。


1.2.7 Mg-Sr合金 常见Mg-Sr二元合金中Sr的添加量一般为0.3%~4% (质量分数),主要由α-Mg及Mg17Sr2相构成,两相之间存在电偶腐蚀而导致合金的降解[37]。Zhao等[38]研究表明,挤压态Mg-2%Sr (质量分数)合金具有*佳的强度与耐蚀性,过量的Sr则降低合金强度,加速合金降解。Gu等[39]发现,轧制Mg-2%Sr (质量分数)合金具有*佳的强度与耐蚀性,其细胞毒性反应与宿主反应均在植入器件可接受的水平下。Mg-Sr合金有望在骨科植入物等医疗领域得以应用。


1.2.8 Mg-Sc合金 Ogawa等[40]发现,Mg中添加Sc可获得bcc结构(β型)的Mg-Sc合金。β型Mg-Sc合金会引起可逆的马氏体相变,表现出形状记忆特性,形状记忆镁合金非常适合用于扩张支架等医疗器具领域。对于密度为2 g/cm3的Mg-20.5%Sc (原子分数)合金,在-150 ℃低温下显示出4.4%以上的超弹性变形[41,42]。Sc作为稀有元素,在地壳中的含量非常稀少,高成本和资源匮乏可能阻碍Mg-Sc合金的大规模应用。


1.2.9 Mg-Ti合金 虽然Ti和Mg都具有良好的生物相容性,但根据Mg-Ti二元相图,两者之间溶解度极小,难以形成固溶体,也不能形成金属间化合物。且Ti的熔点超过Mg的沸点,采用常规方法不太可能制备Mg-Ti合金。

采用物理气相沉积(PVD)可制备Mg-Ti合金,且Ti在Mg中的溶解度可达22.7%[43]。Garcés等[44]利用PVD方法制备了Mg-14%Ti-1%Al-0.9%Mn (质量分数)合金,该合金组织为柱状晶,具有高的缺陷浓度和尺寸为0.1~0.3 μm的细小晶粒,表现出高的室温屈服强度,但塑性低。Liang和Schulz[43]利用机械合金化,将Mg粉、Ti粉混合,获得纳米晶Mg-Ti合金,提高了Ti在Mg中的固溶度。以Mg-20%Ti (原子分数)合金为例,约12.5%Ti (原子分数)固溶于Mg中,其余部分以细小颗粒的形式存在,尺寸为50~150 nm。Mg中溶解Ti导致Mg晶包体积从0.0464 nm3降低到0.0442 nm3,轴比从1.624降到1.612,此过饱和Mg-Ti合金在200 ℃会分解。目前还未见有关Mg-Ti合金的降解行为的报道。

另外,由于Mg-Al、Al-Ti之间都有较高的溶解度。为解决此问题,本文作者前期工作[45]在Mg和Ti之间加入一中间过渡Al层,采用磁控溅射法在镁合金表面喷涂Al/Ti复合涂层,然后通过热扩散提高涂层的结合力,获得了较厚的、结合优良的、耐蚀性好的涂层,与基体形成三明治结构。

1.2.10 Mg-Ge合金 Liu等[46]研究发现,二元Mg-Ge合金主要由α-Mg树枝晶以及α-Mg+Mg2Ge共晶构成,Ge的加入有效减小了合金的晶粒尺寸,提高了合金的抗拉强度,但降低了合金的延伸率。Bian等[47]研究发现,Mg-Ge合金比其它添加人体必需元素的合金的力学和耐蚀性能更佳,且后续的变形加工,诸如轧制、挤压等也会更好地改善合金的性能,这主要归因于Mg-Ge合金中的共晶相(α-Mg+Mg2Ge):一方面该共晶相作为合金的阴极,与α-Mg基体相形成电偶腐蚀,导致基体相腐蚀;另一方面,该共晶相又作为基体相的物理屏障,起到抑制降解的作用。